

РАЗДЕЛ II ПРОЦЕССЫ ОБРАБОТКИ ДАВЛЕНИЕМ В МАШИНОСТРОЕНИИ

УДК 621.01:541

Сивак Р. И.

ВЛИЯНИЕ НЕРАВНОМЕРНОСТИ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ НА ИСПОЛЬЗОВАННЫЙ РЕСУРС ПЛАСТИЧНОСТИ

Развитая пластическая деформация всегда является неравномерной как на микро- так и на макроуровнях. Микроскопическая неоднородность естественна и определяется механизмом атомных перемещений, сама модель дислокационного механизма пластической деформации является неравномерной вследствие нарушения кристаллографической структуры. При выполнении определенных условий можно реализовать равномерную макродеформацию, хотя и в этом случае деформация на микроуровне будет неоднородной. Неравномерность пластической деформации порождает неоднородность внутренних силовых полей, которые влияют как на интенсивность накопления повреждений, так и на их залечивание. Необходимо отметить, что процессы пластической деформации и накопления повреждений взаимосвязаны, то есть повреждения влияют на поведение материала, а история нагружения на повреждения [1, 2]. Вследствие этого металлы, деформированные в условиях неравномерного распределения пластических деформаций, приобретают качественно новые свойства, многие из которых представляют практический интерес. В частности, при неоднородной деформации увеличивается пластичность [3] и имеет место измельчение зерна [4].

Для оценки пластичности металла при пластическом деформировании используют, в основном, известные критерии деформируемости В. Л. Колмогорова, Г. Д. Деля и В. А. Огородникова [5–7]. Однако в этих критериях не учитывается влияние неоднородности напряженно-деформированного состояния на пластичность. В данной работе неоднородность НДС будем характеризовать неравномерностью пластических деформаций.

Целью работы является повышение точности расчетов использованного ресурса пластичности ψ в процессах обработки металлов давлением на основе оценки совместного влияния схемы напряженного состояния и неравномерности распределения пластических деформаций на величину ψ .

В общем случае среднее значение градиента пластических деформаций макрочастицы характеризуется производными от компонент тензора деформаций ε_{ij} по координатам. Одной из инвариантных характеристик неравномерности распределения пластических деформаций является дивергенция тензорного поля. В случае прямолинейных ортогональных осей координат дивергенция тензора деформаций определяется как вектор с компонентами:

$$(divE)_{x} = \frac{\partial \varepsilon_{xx}}{\partial x} + \frac{\partial \varepsilon_{xy}}{\partial y} + \frac{\partial \varepsilon_{xz}}{\partial z};$$

$$(divE)_{y} = \frac{\partial \varepsilon_{yx}}{\partial x} + \frac{\partial \varepsilon_{yy}}{\partial y} + \frac{\partial \varepsilon_{yz}}{\partial z};$$

$$(divE)_{z} = \frac{\partial \varepsilon_{zx}}{\partial x} + \frac{\partial \varepsilon_{zy}}{\partial y} + \frac{\partial \varepsilon_{zz}}{\partial z}.$$

$$(1)$$

Необходимо отметить, что вектор (1) определяет направление, в котором скорость изменения поля тензора деформаций имеет наибольшее значение. Так как длина вектора является инвариантом, то величину:

$$A_{1} = \sqrt{(divE)_{x}^{2} + (divE)_{y}^{2} + (divE)_{z}^{2}}$$
 (2)

можно использовать для количественной оценки неравномерности деформаций.

Кроме того, неравномерность пластических деформаций будем характеризовать градиентом степени пластической деформации $grade_u$. В данной работе для оценки зависимости приращения предельной деформации Δe_p от неравномерности распределения пластических деформаций использованы экспериментальные зависимости, полученные в работах [3, 8]. Разная степень неравномерности распределения пластических деформаций достигалась за счет изменения размеров поперечного сечения образцов при чистом изгибе и путём изменения диаметров образцов при кручении.

В обоих случаях величину $grade_u$ определяли по формуле:

$$grade_{u} = \frac{\partial e_{u}}{\partial r} \,. \tag{3}$$

Экспериментальные зависимости прироста предельной деформации Δe_p от характеристик неравномерности A_I и $grade_u$ практически совпадают [3, 8]. Такой результат говорит о том, что в качестве количественной характеристики неравномерности можно использовать как A_I , так и $grade_u$. Исходя из этого в данной работе на рис. 1, 2 приведены только зависимости $\Delta e_p(grade_u)$ для неравномерного растяжения и кручения. Необходимо отметить, что материал образца практически не влияет на характер зависимости $\Delta e_p(grade_u)$. Поэтому на рис. 1, 2 приведены средние значения приращения предельной деформации для четырех исследованных материалов: сталей P6M5, P18, стали 45 и дюралюминия Д1Т.

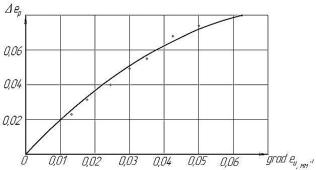


Рис. 1. Зависимость Δe_p от $grad\ e_u$, при $\eta=1,\ \mu_\sigma=-1$

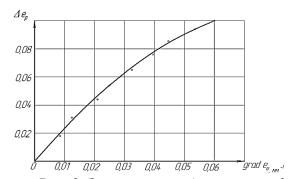


Рис. 2. Зависимость Δe_p от $grad\ e_u$, при $\eta=0,\ \mu_\sigma=0$

Как уже отмечалось, характер зависимости $\Delta e_p(grade_u)$ слабо зависит от материала образца, но существенно зависит от схемы напряженного состояния. Это следует из сравнения результатов, приведенных на рис. 1 и рис. 2. При изменении $grade_u$ от 0 до 0,06 мм⁻¹ для неравномерного растяжения ($\eta=1,\ \mu_\sigma=-1$) прирост предельной деформации $\Delta e_p=0,078$, а при изменении $grade_u$ от 0 до 0,06 мм⁻¹ для неравномерного сдвига ($\eta=0,\ \mu_\sigma=0$) прирост предельной деформации составляет $\Delta e_p=0,1$.

Зависимость Δe_p от $grade_u$ при неравномерном растяжении (рис. 1) аппроксимировали формулой:

$$\Delta e_p(1) = 0.6(grad\ e_u)^{0.68},$$
 (4)

а при неравномерном сдвиге (рис. 2) зависимость Δe_p от $grade_u$ аппроксимировали кривой:

$$\Delta e_p(0) = (grad e_u)^{0.8}.$$
 (5)

Полученные результаты свидетельствуют о том, что для оценки величины использованного ресурса пластичности в процессах обработки давлением, для которых характерная значительная неоднородность распределения пластических деформаций, необходимо учитывать влияние как схемы напряженного состояния, так и совместное влияние схемы напряженного состояния и $grade_u$.

В данной работе для оценки влияния $grade_u$ на величину использованного ресурса пластичности ψ предлагается следующая методика. Для оценки величины ψ будем использовать критерий:

$$\psi = \int_{0}^{e_u} \frac{e_u^{m-1}}{\left(e_p(\eta, \mu_\sigma, grade_u)\right)^m},\tag{6}$$

где $e_p(\eta, \mu_{\sigma}, grade_u)$ – поверхность предельных деформаций, в которой учтено влияние $grade_u$;

$$m = 1 + a \frac{d\eta}{de_u} - b \frac{d\mu_\sigma}{de_u},$$

a, b – эмпирические константы, которые зависят от материала заготовки.

При этом для учета влияния неоднородности распределения пластических деформаций на величину предельной деформации Δe_p поверхность $e_p(\eta, \mu_\sigma, grade_u)$ определяется зависимостью:

$$e_p(\eta, \mu_{\sigma}, grade_u) = e_p(\eta, \mu_{\sigma}) + \Delta e_p(\eta, \mu_{\sigma}, grade_u),$$
 (7)

где $e_p(\eta, \mu_\sigma)$ – поверхность предельных деформаций, построенная по известной методике [9],

 $\Delta e_p(\eta, \mu_\sigma, grade_u)$ – приращение предельной деформации, обусловленное $grade_u$, при данной схеме напряжённого состояния.

Для определения Δe_p предлагается следующая методика. По известным значениям $grade_u$ определяется $\Delta e_p(1)$ при растяжении по формуле (4) и при кручении $\Delta e_p(0)$ по формуле (5). Для получения зависимости Δe_p от показателя напряженного состояния при заданном $grade_u$ используем аппроксимацию В. А. Огородникова [6]:

$$\Delta e_{p}(\eta) = \Delta e_{p}(0) \exp(-\lambda \eta), \tag{8}$$

где
$$\lambda = \ln(\Delta e_p(0)/\Delta e_p(1)). \tag{9}$$

Чтобы определить зависимость Δe_p от двух показателей напряженного состояния η и μ_{σ} использовали методику, приведенную в работе [9]. Для этого по формуле (8) рассчитываем прирост предельной деформации Δe_p (-1) при η = -1 и определяем параметр:

$$\lambda = \ln \frac{\Delta e_p(-1)}{\Delta e_p(0)} \,. \tag{10}$$

По приведенным в работе [9] зависимостям λ_1 и λ_2 от λ находим λ_1 и λ_2 для полученного значения λ и аппроксимируем прирост пластической деформации Δe_p при заданном $grade_u$ зависимостью:

$$\Delta e_n(\eta, \mu_{\sigma}, grade_u) = \Delta e_n(0,0) \exp(\lambda_2 \mu_{\sigma} - \lambda_1 \eta). \tag{11}$$

Полученное по формуле (11) значение $\Delta e_p(\eta, \mu_{\sigma}, grade_u)$ используем для определения $e_p(\eta, \mu_{\sigma}, grade_u)$ по формуле (7).

Предложенная методика использована для расчета величины использованного ресурса пластичности в поверхностном пластически деформированном слое металла при поверхностном пластическом деформировании [10]. При ППД пластическая деформация происходит

только в малом объеме металла, очаге деформации, форма и размеры которого зависят от соотношения размеров и геометрии поверхности детали и инструмента. Кроме того, в очаге деформации имеют место большие градиенты пластических деформаций, которые оказывают влияние на неоднородность упрочнения и на процесс накопления повреждений.

При использовании разработанной методики для оценки зависимости величины прироста пластической деформации Δe_p от $grade_u$ необходимо учитывать, что при поверхностном пластическом деформировании $grade_u$ постоянно изменяется. Для учета влияния этого изменения на Δe_p необходимо использовать формулы (4) и (5) для расчета соответствующих значений $\Delta e_p(0)$ и $\Delta e_p(1)$ и формулу (11) для расчёта $\Delta e_p(\eta, \mu_\sigma, grade_u)$.

При расчёте использованного ресурса пластичности ψ считали, что ψ =1 при появлении шелушения поверхности. Это условие использовали для оценки точности расчётов ψ по критерию (6). При этом расхождение рассчитанных значений ψ с экспериментальными результатами не превышало 15 %. Однако при изменении направления движения инструмента относительно поверхности детали сказывается немонотонность нагружения и погрешность превышает 50%, поэтому применять критерий (6) нежелательно.

ВЫВОДЫ

Предложена методика оценки влияния неоднородности распределения пластических деформаций на пластичность металла с учётом комплексного влияния схемы напряжённого состояния и градиента степени пластической деформации $grade_u$. Так как приращение степени пластической деформации Δe_p зависит как от $grade_u$, так и от схемы напряженного состояния, то для количественной оценки влияния $grade_u$ на величину использованного ресурса пластичности ψ , поверхность предельных деформаций $e_p(\eta, \mu_\sigma)$ в критерии деформируемости (6) заменена поверхностью предельных деформаций $e_p(\eta, \mu_\sigma, grade_u)$, что позволило более точно оценить влияние неоднородности распределения пластических деформаций на пластичность металла.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Сивак Р. И. Пластичность металлов при сложном нагружении / Р. И. Сивак, И. О. Сивак // Вісник НТУУ «КПІ». К. : НТУУ «КПІ», 2010. № 60. –С. 129–132. (Серія «Машинобудування»).
- 2. Сивак Р. И. Оценка предельных деформаций при немонотонном нагружении / Р. И. Сивак, И. Г. Савчинский, И. О. Сивак // Вісник НТУУ «КПІ. К. : НТУУ «КПІ», 2011. № 62. С. 247—250. (Серія «Машинобудування»).
- 3. Огородников В. А. Зависимость пластичности металлов от градиента пластических деформаций / В. А. Огородников, И. О. Сивак // Изв. АН СССР. Металлы. 1978. № 6. С. 169—174.
- 4. Процессы пластического структурообразования металлов / В. М. Сегал, В. И. Резников, В. И. Копылов, Д. А. Павлик, В. Ф. Малышев. Минск : Навука и тэхника, 1994. 232 с.
- 5. Колмогоров В. Л. Напряжения, деформации, разрушение / В. Л. Колмогоров. М. : Металлургия, 1970. 229 c.
- 6. Огородников В. А. Оценка деформируемости металлов при обработке давлением / В. А. Огородников. Киев: Вища школа, 1983.-175 с.
 - 7. Дель Γ . Д. Технологическая механика / Γ . Д. Дель. М. : Машиностроение, 1978. 174 с.
- 8. Сивак И.О. Влияние неравномерности напряжённого состояния на пластичность / И.О. Сивак, С.И. Сухоруков, Е.И. Сивак // Удосконалення процесів і обладнання обробки тиском в металургії і машинобудуванні : тематич. зб. наук. пр. Краматорськ-Слов'нськ : ДДМА, 2003. С. 221—225.
- 9. Сивак И. О. Поверхность предельной пластичности / И. О. Сивак // Удосконалення процесів і обладнання обробки тиском в металургії і машинобудуванні : тем. зб. наук. пр. Краматорськ : ДДМА, 2003. С. 272–274.
- 10. Сивак І. О. Зміцнення поверхневого шару металу у разі вдавлювання кульки / І. О. Сивак, Т. В. Ярошенко // Вісник Вінницького політехнічного інституту. 2010. N = 4(91). C.54 = 58.

Сивак Р. И. – канд. техн. наук, доц. ВНАУ.

ВНАУ – Винницкий национальный аграрный университет, г. Винница.

E-mail: sivak r i@mail.ru